Skip to main content

Bernoulli’s Principle and Equation

Bernoulli’s Principle and Equation

During 17th century, Daniel Bernoulli investigated the forces present in a moving fluid, derived an equation and named it as an Bernoulli’s equation. Below image shows one of many forms of Bernoulli’s equation.
The Bernoulli equation gives an approximate equation that is valid only in inviscid regions of flow where net viscous forces are negligibly small compared to inertial, gravitational or pressure forces. Such regions occur outside of boundary layers and waves.
Bernoulli's Principle
Bernoulli’s Principle
Image Source: Hyperphysics
Despite its simplicity, Bernoulli’s Principle has proven to be a very powerful tool in fluid mechanics.
Care must be taken when applying the Bernoulli equation since it is an approximation that applies only to inviscid regions of flow. In general, frictional effects are always important very close to solid walls and directly downstream of bodies.
The motion of a particle and the path it follows are described by the velocity vector as a function of time and space coordinates and the initial position of the particle. When the flow is steady, all particles that pass through the same point follow the same path and the velocity vectors remain tangent to the path at every point.

Assumptions in Bernoulli’s equation:

  • Fluid is ideal and in-compressible.
  • Flow is steady
  • Flow is continuous
  • Flow is non-viscous
  • Flow is irrotational
  • Applicable along a stream line.

Comments

Popular posts from this blog

Grashof’s Law

Grashof’s Law The Grashof’s law states that for a four-bar linkage system, the sum of the shortest and longest link of a planar quadrilateral linkage is less than or equal to the sum of the remaining two links, then the shortest link can rotate fully with respect to a neighboring link. Consider a four-bar-linkage. Denote the smallest link by S, the longest link by L and the & other two links by P and Q. If the Grashof’s Law condition is satisfied i.e S+L ≤ P+Q, then depending on whether shortest link ‘S’ is connected to the ground by one end, two ends, or no end there are 3 possible mechanisms. They are: Double crank mechanism Double-rocker mechanism  and Crank and Rocker Mechanism 1. Double crank mechanism In double crank mechanism, the shortest link ‘S’ is a ground link. Both input crank and output crank rotate at 360°. Grashof’s condition for double crank mechanism: s+l > p+ q Let:  ‘s’  = length of shortest link, ‘l’  = length...

Gruebler’s Equation

Gruebler’s Equation Degrees of freedom for planar linkages joined with common joints can be calculated through Gruebler’s equation. Gruebler’s equation is given by the formula: where, n = total number of links in the mechanism j p  = total number of primary joints (pins or sliding joints) j h  = total number of higher-order joints (cam or gear joints) Mechanisms and structures with varying mobility for Figure (a), (b) and (c) Most linkages used in machines have a single degree of freedom. An example of single degree-of-freedom linkage is shown in figure (a). Linkages with zero or negative degrees of freedom are termed locked mechanisms. Locked mechanisms are unable to move and form a structure. A truss is a structure composed of simple links and connected with pin joints and zero degrees of freedom. An example of locked mechanism is shown in figure (b). Linkages with multiple degrees of freedom need more than one dri...

Fundamental Concepts and Terms in Vibration

Fundamental Concepts and Terms in Vibration Vibration is a mechanical phenomenon, It is a movement first in one direction and then back again in the reverse direction. e.g: the motion of a swinging pendulum, the motion of a tuning fork. Any simple vibration is described by three factors: its amplitude; its frequency and rate of oscillation. Some of the general terms you will come across while studying on vibration topic are Oscillatory motion, Simple Harmonic Motion, Periodic Motion. now we will see the above mentioned terms in brief. Oscillatory motion is described as motion that repeats itself in a regular intervals of time. for example a sine wave or cos wave or pendulum. The time taken for an oscillation to occur is often referred to as the oscillatory period. Simple Harmonic Motion: Simple Harmonic Motion is periodic motion in which the restoring force is directly proportional to the displacement. F = -k*x A simple harmonic motion of a pendulum is an example of m...