Skip to main content

Electro Chemical Machining (ECM)

Electro Chemical Machining (ECM)

Electrochemical machining (ECM) is a non-traditional machining process uses the principle of Faraday to remove metal from the workpiece. Electrolysis is based on Faraday laws of electrolysis which is stated as
weight of substance produced during electrolysis is proportional to current passing, length of time the process used and the equivalent weight of material which is deposited.
Michael Faraday discovered that if two electrodes are placed in a bath containing liquid and when a direct potential is applied across electrodes, The metal can be depleted from the anode and plated on the cathode. This process is universally used in electroplating by making the workpiece the cathode.
Electrochemical Machining (ECM) is performed by reversing the process of electroplating, ECM utilizes the principle of electrolysis for metal removal. The high rate of electrolyte movement in the tool-workpiece gap washes metal ions away by anodic dissolution from the electrically conductive workpiece (anode: positive pole) before they have a chance to plate onto the tool (cathode: negative pole).
Tool work-gap in ECM needs to be maintained at a very small value of the order of 0.25 mm for satisfactory metal removal rates. The electrolyte needs to be pumped through the gap 0.25 mm at high pressures (0.7 – 3.0 MPa). For the recirculation of electrolyte, it is necessary to clean the electrolyte of the debris formed due to metal removal.
Electro Chemical Machining
ECM Metal Removal Rate is independent of the hardness of work.
Material removal rate in ECM process
Where, F = faraday’s constant = 96,500 Columns = 26.8 amp-hours,
I = current flowing in amperes,
Z = Valances of metal dissolved,
A = atomic weight of material in grams,
MRR = Material removal rate in grams per second.

Electro Chemical Machining consists of following basic elements:

Electrolyte: In Electro Chemical Machining an electrolyte acts as a current carrier. The electrolyte in Ecm should have high electrical conductivity, low viscosity, high specific heat, chemical stability, resistance to form a passivating film on the workpiece surface, non-corrosives and non-toxicity. The conductivity of electrolyte depends on salt concentration, dissolved gases, machined debris and temperature. Inorganic salt solutions satisfy these requirements, such as sodium chloride (NaCl) or Potassium chloride (KCl) is mixed in water or sodium citrate.
The electrolyte enters the gap between the electrode and the workpiece a pressure ranging from 1.4 to 2.4 MPa. The flow of electrolysis serves the function of removing heat and hydrogen bubbles created in the chemical reactions of the process. The flow should be without cavitation, stagnation and vortex formation. This can be achieved by avoiding sharp corners in the flow path.
Tool material: Tool materials for ECM should be electrically and thermally conductive and highly resistant to corrosion. The surface finish of the electrode tool is generally made of aluminium, copper, brass, bronze, titanium, cupronickel or stainless steel.
The electrode is generally made smaller than the cavity desired because the erosion action progressing outward from the electrode always produces a cavity larger than the electrode.
Power supply: In ECM a DC power supply is used in the range of 5 to 25 Volts to maintain current densities in the range of 1.5-8.0 A/sq.mm. The voltage is kept relatively low to minimize arcing across the gap.

Advantages:

  • Complex, concave curvature components can be produced easily by using convex and concave tools.
  • Tool wear is zero, same tool can be used for producing infinite number of components.
  • No direct contact between tool and work material so there are no forces, residual stresses.
  • The surface finish produced is excellent.

Limitations:

  • Out of all the unconventional machining methods, electro chemical machining requires high specific cutting energy.
  • Sharp edges and corners are not possible to produce.
  • Work material must be electrically conducting.
  • Generally preferable for producing contours only.

Applications:

Electro chemical machining technique removes material by atomic level dissolution of the same by electro chemical action. Thus the material removal rate (MRR) is independent on the mechanical or physical properties of the work material. ECM can machine any electrically conductive work material irrespective of their hardness, strength or even thermal properties. Moreover as ECM leads to atomic level dissolution, the surface finish is excellent with almost stress free machined surface and without any thermal damage. Mainly ECM is used for producing complex shapes of compound like turbine blades.
ECM is used commonly for operations like
  • Die sinking
  • Profiling and contouring
  • Trepanning
  • Grinding
  • Drilling
  • Micro-machining

Comments

Popular posts from this blog

Grashof’s Law

Grashof’s Law The Grashof’s law states that for a four-bar linkage system, the sum of the shortest and longest link of a planar quadrilateral linkage is less than or equal to the sum of the remaining two links, then the shortest link can rotate fully with respect to a neighboring link. Consider a four-bar-linkage. Denote the smallest link by S, the longest link by L and the & other two links by P and Q. If the Grashof’s Law condition is satisfied i.e S+L ≤ P+Q, then depending on whether shortest link ‘S’ is connected to the ground by one end, two ends, or no end there are 3 possible mechanisms. They are: Double crank mechanism Double-rocker mechanism  and Crank and Rocker Mechanism 1. Double crank mechanism In double crank mechanism, the shortest link ‘S’ is a ground link. Both input crank and output crank rotate at 360°. Grashof’s condition for double crank mechanism: s+l > p+ q Let:  ‘s’  = length of shortest link, ‘l’  = length...

Gruebler’s Equation

Gruebler’s Equation Degrees of freedom for planar linkages joined with common joints can be calculated through Gruebler’s equation. Gruebler’s equation is given by the formula: where, n = total number of links in the mechanism j p  = total number of primary joints (pins or sliding joints) j h  = total number of higher-order joints (cam or gear joints) Mechanisms and structures with varying mobility for Figure (a), (b) and (c) Most linkages used in machines have a single degree of freedom. An example of single degree-of-freedom linkage is shown in figure (a). Linkages with zero or negative degrees of freedom are termed locked mechanisms. Locked mechanisms are unable to move and form a structure. A truss is a structure composed of simple links and connected with pin joints and zero degrees of freedom. An example of locked mechanism is shown in figure (b). Linkages with multiple degrees of freedom need more than one dri...

Fundamental Concepts and Terms in Vibration

Fundamental Concepts and Terms in Vibration Vibration is a mechanical phenomenon, It is a movement first in one direction and then back again in the reverse direction. e.g: the motion of a swinging pendulum, the motion of a tuning fork. Any simple vibration is described by three factors: its amplitude; its frequency and rate of oscillation. Some of the general terms you will come across while studying on vibration topic are Oscillatory motion, Simple Harmonic Motion, Periodic Motion. now we will see the above mentioned terms in brief. Oscillatory motion is described as motion that repeats itself in a regular intervals of time. for example a sine wave or cos wave or pendulum. The time taken for an oscillation to occur is often referred to as the oscillatory period. Simple Harmonic Motion: Simple Harmonic Motion is periodic motion in which the restoring force is directly proportional to the displacement. F = -k*x A simple harmonic motion of a pendulum is an example of m...