Skip to main content

Laser Beam Machining (LBM)

Laser Beam Machining (LBM)

Laser technology is being used for a variety of industrial applications, including heat treatment, welding, measurement, as well as scribing, cutting, and drilling (described here). The term laser stands for light amplification by stimulated emission of radiation.A laser is an optical transducer that converts electrical energy into a highly coherent light beam. A laser light beam has several properties that distinguish it from other forms of light. It is monochromatic (theoretically, the light has a single wavelength) and highly collimated (the light rays in the beam are almost perfectly parallel). These properties allow the light generated by a laser to be focused, using conventional optical lenses, onto a tiny spot with resulting high power densities. Depending on the amount of energy contained in the light beam, and its degree of concentration at the spot, the various laser processes identified in the preceding can be accomplished.
Laser beam machining
Figure 1: Laser Beam Machining
Laser beam machining (LBM) uses the light energy from a laser device for the material removal by vaporization and ablation. The setup for LBM is illustrated in Figure 1. The types of lasers used in LBM are carbon dioxide gas lasers and solid-state lasers. In laser beam machining, the energy of the coherent light beam is concentrated not only optically but also regarding time. The light laser beam is pulsed so that the released energy results in an impulse against the work surface with the melted material evacuating the surface at a high velocity that produces a combination of evaporation and melting.
Laser Beam Machining (LBM) is used to perform various types of drilling, slitting, slotting, scribing, and marking operations. Drilling small diameter holes is possible—down to 0.025mm. For larger holes, above 0.50mm  diameter, the laser beam is controlled to cut the outline of the hole. Laser Beam Machining (LBM) is not considered a mass production process, and it is used on thin stock. The range of work materials that can be machined by LBM is virtually unlimited. Ideal properties of the material for LBM include high light energy absorption, reduced reflectivity, low specific heat, low heat of fusion, excellent thermal conductivity, and low heat of vaporization. Of course, no material has this ideal combination of properties.
The actual list of work materials processed by LBM includes ceramics, glass and glass epoxy, plastics, rubber, cloth, wood and metals with high hardness and strength, soft metals.

Comments

Popular posts from this blog

Grashof’s Law

Grashof’s Law The Grashof’s law states that for a four-bar linkage system, the sum of the shortest and longest link of a planar quadrilateral linkage is less than or equal to the sum of the remaining two links, then the shortest link can rotate fully with respect to a neighboring link. Consider a four-bar-linkage. Denote the smallest link by S, the longest link by L and the & other two links by P and Q. If the Grashof’s Law condition is satisfied i.e S+L ≤ P+Q, then depending on whether shortest link ‘S’ is connected to the ground by one end, two ends, or no end there are 3 possible mechanisms. They are: Double crank mechanism Double-rocker mechanism  and Crank and Rocker Mechanism 1. Double crank mechanism In double crank mechanism, the shortest link ‘S’ is a ground link. Both input crank and output crank rotate at 360°. Grashof’s condition for double crank mechanism: s+l > p+ q Let:  ‘s’  = length of shortest link, ‘l’  = length...

Gruebler’s Equation

Gruebler’s Equation Degrees of freedom for planar linkages joined with common joints can be calculated through Gruebler’s equation. Gruebler’s equation is given by the formula: where, n = total number of links in the mechanism j p  = total number of primary joints (pins or sliding joints) j h  = total number of higher-order joints (cam or gear joints) Mechanisms and structures with varying mobility for Figure (a), (b) and (c) Most linkages used in machines have a single degree of freedom. An example of single degree-of-freedom linkage is shown in figure (a). Linkages with zero or negative degrees of freedom are termed locked mechanisms. Locked mechanisms are unable to move and form a structure. A truss is a structure composed of simple links and connected with pin joints and zero degrees of freedom. An example of locked mechanism is shown in figure (b). Linkages with multiple degrees of freedom need more than one dri...

Fundamental Concepts and Terms in Vibration

Fundamental Concepts and Terms in Vibration Vibration is a mechanical phenomenon, It is a movement first in one direction and then back again in the reverse direction. e.g: the motion of a swinging pendulum, the motion of a tuning fork. Any simple vibration is described by three factors: its amplitude; its frequency and rate of oscillation. Some of the general terms you will come across while studying on vibration topic are Oscillatory motion, Simple Harmonic Motion, Periodic Motion. now we will see the above mentioned terms in brief. Oscillatory motion is described as motion that repeats itself in a regular intervals of time. for example a sine wave or cos wave or pendulum. The time taken for an oscillation to occur is often referred to as the oscillatory period. Simple Harmonic Motion: Simple Harmonic Motion is periodic motion in which the restoring force is directly proportional to the displacement. F = -k*x A simple harmonic motion of a pendulum is an example of m...