Skip to main content

Thermodynamic Air Standard Cycles

Thermodynamic Air Standard Cycles

The working fluid of heat engines is subjected to a series of changes (in temperature, volume, pressure, etc.), known as thermodynamic air standard cycles, through which the energy absorbed as heat is converted into mechanical work. Internal combustion engines do not operate on a thermodynamic cycle as it involves an open system. However, it is often possible to analyze the open cycle by imagining one or more processes that would bring the working fluid at the exit conditions back to the condition of the starting point. The actual gas power cycles are rather complex.
To reduce the analysis to a manageable level, the following approximations, commonly known as air standard assumptions, are made:
  1. The working medium is a perfect gas.
  2. There is no change in the mass of the working medium.
  3. All the processes that constitute the cycle are reversible.
  4. Heat is supplied from a constant high-temperature source.
  5. Some heat is assumed to be rejected to a constant low-temperature sink during the cycle.
  6. There are no undesired heat losses from the system to the surroundings.
  7. The working medium has constant specific heats throughout the cycle.
  8. The physical properties (cp, cv, μ, γ) of the working fluid are constant.
Another assumption that is often utilized to simplify the analysis, even more, is that air has constant specific heats whose values are determined at room temperature (25°C). When the assumption is utilized, the air standard assumptions are called cold air standard assumptions. A cycle for which air standard assumptions are applicable is frequently referred to as an air standard cycle.
Throughout the study, the heat supplied and heat rejected denoted by Qs and Qr, respectively. The total work output is expressed as Wnet. The mean effective pressures are referred as pm. Mass flow rate of working fluid is ‘m’, and ‘p, v, T’ are the pressure, specific volume, and absolute temperature of the working medium with subscripts of the points in the cycle. Compression ratio (r) is the ratio of volume during the compression process, and pressure ratio is the ratio of pressures.
Mean effective pressure (pm) is defined as that hypothetical constant pressure acting on the piston during its expansion stroke producing the same work output like that from the actual cycle:
mean effective pressure formula
This can be determined using indicator diagram as
mean effective pressure formula for indicator diagram
Important thermodynamic air standard cycles are listed below.
  1. Carnot cycle
  2. Stirling cycle
  3. Ericsson cycle
  4. Otto cycle
  5. Diesel cycle
  6. Dual cycle
  7. Brayton cycle
  8. Lenoir cycle and
  9. Atkinson cycle.

Comments

Popular posts from this blog

Grashof’s Law

Grashof’s Law The Grashof’s law states that for a four-bar linkage system, the sum of the shortest and longest link of a planar quadrilateral linkage is less than or equal to the sum of the remaining two links, then the shortest link can rotate fully with respect to a neighboring link. Consider a four-bar-linkage. Denote the smallest link by S, the longest link by L and the & other two links by P and Q. If the Grashof’s Law condition is satisfied i.e S+L ≤ P+Q, then depending on whether shortest link ‘S’ is connected to the ground by one end, two ends, or no end there are 3 possible mechanisms. They are: Double crank mechanism Double-rocker mechanism  and Crank and Rocker Mechanism 1. Double crank mechanism In double crank mechanism, the shortest link ‘S’ is a ground link. Both input crank and output crank rotate at 360°. Grashof’s condition for double crank mechanism: s+l > p+ q Let:  ‘s’  = length of shortest link, ‘l’  = length...

Gruebler’s Equation

Gruebler’s Equation Degrees of freedom for planar linkages joined with common joints can be calculated through Gruebler’s equation. Gruebler’s equation is given by the formula: where, n = total number of links in the mechanism j p  = total number of primary joints (pins or sliding joints) j h  = total number of higher-order joints (cam or gear joints) Mechanisms and structures with varying mobility for Figure (a), (b) and (c) Most linkages used in machines have a single degree of freedom. An example of single degree-of-freedom linkage is shown in figure (a). Linkages with zero or negative degrees of freedom are termed locked mechanisms. Locked mechanisms are unable to move and form a structure. A truss is a structure composed of simple links and connected with pin joints and zero degrees of freedom. An example of locked mechanism is shown in figure (b). Linkages with multiple degrees of freedom need more than one dri...

Fundamental Concepts and Terms in Vibration

Fundamental Concepts and Terms in Vibration Vibration is a mechanical phenomenon, It is a movement first in one direction and then back again in the reverse direction. e.g: the motion of a swinging pendulum, the motion of a tuning fork. Any simple vibration is described by three factors: its amplitude; its frequency and rate of oscillation. Some of the general terms you will come across while studying on vibration topic are Oscillatory motion, Simple Harmonic Motion, Periodic Motion. now we will see the above mentioned terms in brief. Oscillatory motion is described as motion that repeats itself in a regular intervals of time. for example a sine wave or cos wave or pendulum. The time taken for an oscillation to occur is often referred to as the oscillatory period. Simple Harmonic Motion: Simple Harmonic Motion is periodic motion in which the restoring force is directly proportional to the displacement. F = -k*x A simple harmonic motion of a pendulum is an example of m...