Skip to main content

Different Types of Heads in Hydraulic Pumps

Different Types of Heads in Hydraulic Pumps

Pumps are the machines that raise water from underground to the required height by the power given to the impellers by motors. Pumps are mainly used by the farmers all around the world for irrigation purposes. It is vital for all of us to understand all the equations that we deal with, in our turbomachinery classes so we can make better pumps and build better future for the farmers and ourselves, of course.
Let’s imagine some water at the impeller’s eye in the pump. This water rotates around, along with the impeller blades in a particular angle and direction such that it is moving upwards. This happens because of the pressure difference created in the impellers along the blades. The water at the eye has now transferred to the other side of the blade creating vacuum at the eye which causes more water to be pulled up to the eye. The height from the point where the water is being sucked to the impeller’s eye is called the suction head (hs).
The water from here now moves up to the required level as desired by the person using it. It depends on the rated power that the manufacturer says the pump can deliver. Well, this height to which the water is being delivered from the impeller’s eye is called the delivery head (hd).
These two heads added together is called the Static Head. i.e hs+hd = hstatic.
various heads in hydraulic pumps
Various heads in hydraulic pumps
Thus,
The height to which the pump can pull water up from the reservoir level (by the tank, we mean the point from where it is being sucked) is the net static head.
So, when we design a pump we design it based on the static head it should be providing us with the more the head desired, the more powerful the pump has to be.
We know that when a fluid flows in a pipeline, there is a frictional loss. The same is the case in both suction and delivery pipes too. When the water rises, the friction in the pipelines causes it to lose energy and therefore, it doesn’t rise to the height expected. These losses are denoted by ‘hfs‘ and ‘hfd‘ in suction and delivery pipes respectively. So, our pump has to overcome these losses and provide extra power such that the desired height is obtained. And not only height desired velocity at the end too. We obviously do not want the water to stay in the pipe at its brim. We want it to flow. That means we want the water to have certain kinetic energy at the end. For that, the pump has to do extra work too. Now, combine all of this. We get,
hm = hs + hd + hfs + hfd + (V22/2g)
 Pump diagram
where ‘hm‘ is the Manometric Head
‘hs‘ is the suction head
‘hd‘ is the delivery head
‘hfs‘ is the friction head loss in suction pipe
‘hfd‘ is the friction head loss in delivery pipe
‘V2‘ is the velocity at the exit.
This is the work that the pump has to do to bring the water up to the desired height considering the losses in the pipelines and the velocity we want at the end. Some losses also take place in the impeller. These losses are not considered in the Manometric head.

The specific work done by the pump is
H = U2 × C2u – U1 × C1u = g × hm + C22/2
Where ‘H’ is the specific work done.
‘C2‘ is the velocity at the exit of the impeller.
‘U1‘ and ‘U2‘ are the linear velocities of the rotor’s blade at the entry and the exit.
‘C1u‘ and ‘C2u‘ are the tangential components of the absolute velocity at the entry and exit of the impeller respectively.
The impeller rotates water imparting kinetic energy to it and also increasing pressure, thus imparting pressure energy. This pressure energy is of great use as the more pressure energy the water has, the better height it can gain. But, the kinetic energy is useless. It would just go waste. So, to make the most use of it, we build volute casing around the pump at the exit of the impeller. This casing is essentially body around pump that gradually increases in the area so that the water’s velocity reduces. And owing to the Conservation of Energy and the Bernoulli’s equation, the reduced kinetic energy gets converted to the pressure energy, which is the useful energy. This useful energy is numerically equal to C22/2g. And hence the equation.
H = U2 × C2u – U1 × C1u = g × hm + C22/2
The head is not a confusing term anymore. It just means the height to which the water is raised. And this head (h) multiplied by the acceleration due to gravity (g) gives the amount of specific work that has to be done to raise the water.

Comments

Popular posts from this blog

Fundamental Concepts and Terms in Vibration

Fundamental Concepts and Terms in Vibration Vibration is a mechanical phenomenon, It is a movement first in one direction and then back again in the reverse direction. e.g: the motion of a swinging pendulum, the motion of a tuning fork. Any simple vibration is described by three factors: its amplitude; its frequency and rate of oscillation. Some of the general terms you will come across while studying on vibration topic are Oscillatory motion, Simple Harmonic Motion, Periodic Motion. now we will see the above mentioned terms in brief. Oscillatory motion is described as motion that repeats itself in a regular intervals of time. for example a sine wave or cos wave or pendulum. The time taken for an oscillation to occur is often referred to as the oscillatory period. Simple Harmonic Motion: Simple Harmonic Motion is periodic motion in which the restoring force is directly proportional to the displacement. F = -k*x A simple harmonic motion of a pendulum is an example of m...

Grashof’s Law

Grashof’s Law The Grashof’s law states that for a four-bar linkage system, the sum of the shortest and longest link of a planar quadrilateral linkage is less than or equal to the sum of the remaining two links, then the shortest link can rotate fully with respect to a neighboring link. Consider a four-bar-linkage. Denote the smallest link by S, the longest link by L and the & other two links by P and Q. If the Grashof’s Law condition is satisfied i.e S+L ≤ P+Q, then depending on whether shortest link ‘S’ is connected to the ground by one end, two ends, or no end there are 3 possible mechanisms. They are: Double crank mechanism Double-rocker mechanism  and Crank and Rocker Mechanism 1. Double crank mechanism In double crank mechanism, the shortest link ‘S’ is a ground link. Both input crank and output crank rotate at 360°. Grashof’s condition for double crank mechanism: s+l > p+ q Let:  ‘s’  = length of shortest link, ‘l’  = length...

Gruebler’s Equation

Gruebler’s Equation Degrees of freedom for planar linkages joined with common joints can be calculated through Gruebler’s equation. Gruebler’s equation is given by the formula: where, n = total number of links in the mechanism j p  = total number of primary joints (pins or sliding joints) j h  = total number of higher-order joints (cam or gear joints) Mechanisms and structures with varying mobility for Figure (a), (b) and (c) Most linkages used in machines have a single degree of freedom. An example of single degree-of-freedom linkage is shown in figure (a). Linkages with zero or negative degrees of freedom are termed locked mechanisms. Locked mechanisms are unable to move and form a structure. A truss is a structure composed of simple links and connected with pin joints and zero degrees of freedom. An example of locked mechanism is shown in figure (b). Linkages with multiple degrees of freedom need more than one dri...