Skip to main content

Fourier’s Law of Heat Conduction

Fourier’s Law of Heat Conduction

The law of heat conduction is also known as Fourier’s law. Fourier’s law states that
“the time rate of heat transfer through a material is proportional to the negative gradient in the temperature and to the area.”
Fourier’s equation of heat conduction:
Q = -kA(dT/dx)
Where,
‘Q’ is the heat flow rate by conduction (W)
‘k’ is the thermal conductivity of body material (W·m−1·K−1)
‘A’ is the cross-sectional area normal to direction of heat flow (m2) and
‘dT/dx’ is the temperature gradient (K·m−1).
  • Negative sign in Fourier’s equation indicates that the heat flow is in the direction of negative gradient temperature and that serves to make heat flow positive.
  • Thermal conductivity ‘k’ is one of the transport properties. Other are the viscosity associated with the transport of momentum, diffusion coefficient associated with the transport of mass.
  • Thermal conductivity ‘k’ provides an indication of the rate at which heat energy is transferred through a medium by conduction process.

Assumptions of Fourier equation:

  • Steady state heat conduction.
  • One directional heat flow.
  • Bounding surfaces are isothermal in character that is constant and uniform temperatures are maintained at the two faces.
  • Isotropic and homogeneous material and thermal conductivity ‘k’ is constant.
  • Constant temperature gradient and linear temperature profile.
  • No internal heat generation.

Features of Fourier equation:

  • Fourier equation is valid for all matter solid, liquid or gas.
  • The vector expression indicating that heat flow rate is normal to an isotherm and is in the direction of decreasing temperature.
  • It cannot be derived from first principle.
  • It helps to define the transport property ‘k’.

Comments

Popular posts from this blog

Grashof’s Law

Grashof’s Law The Grashof’s law states that for a four-bar linkage system, the sum of the shortest and longest link of a planar quadrilateral linkage is less than or equal to the sum of the remaining two links, then the shortest link can rotate fully with respect to a neighboring link. Consider a four-bar-linkage. Denote the smallest link by S, the longest link by L and the & other two links by P and Q. If the Grashof’s Law condition is satisfied i.e S+L ≤ P+Q, then depending on whether shortest link ‘S’ is connected to the ground by one end, two ends, or no end there are 3 possible mechanisms. They are: Double crank mechanism Double-rocker mechanism  and Crank and Rocker Mechanism 1. Double crank mechanism In double crank mechanism, the shortest link ‘S’ is a ground link. Both input crank and output crank rotate at 360°. Grashof’s condition for double crank mechanism: s+l > p+ q Let:  ‘s’  = length of shortest link, ‘l’  = length...

Gruebler’s Equation

Gruebler’s Equation Degrees of freedom for planar linkages joined with common joints can be calculated through Gruebler’s equation. Gruebler’s equation is given by the formula: where, n = total number of links in the mechanism j p  = total number of primary joints (pins or sliding joints) j h  = total number of higher-order joints (cam or gear joints) Mechanisms and structures with varying mobility for Figure (a), (b) and (c) Most linkages used in machines have a single degree of freedom. An example of single degree-of-freedom linkage is shown in figure (a). Linkages with zero or negative degrees of freedom are termed locked mechanisms. Locked mechanisms are unable to move and form a structure. A truss is a structure composed of simple links and connected with pin joints and zero degrees of freedom. An example of locked mechanism is shown in figure (b). Linkages with multiple degrees of freedom need more than one dri...

Fundamental Concepts and Terms in Vibration

Fundamental Concepts and Terms in Vibration Vibration is a mechanical phenomenon, It is a movement first in one direction and then back again in the reverse direction. e.g: the motion of a swinging pendulum, the motion of a tuning fork. Any simple vibration is described by three factors: its amplitude; its frequency and rate of oscillation. Some of the general terms you will come across while studying on vibration topic are Oscillatory motion, Simple Harmonic Motion, Periodic Motion. now we will see the above mentioned terms in brief. Oscillatory motion is described as motion that repeats itself in a regular intervals of time. for example a sine wave or cos wave or pendulum. The time taken for an oscillation to occur is often referred to as the oscillatory period. Simple Harmonic Motion: Simple Harmonic Motion is periodic motion in which the restoring force is directly proportional to the displacement. F = -k*x A simple harmonic motion of a pendulum is an example of m...