Skip to main content

Heat Exchangers: Introduction and Classification

Heat Exchangers: Introduction and Classification

Heat exchanger is a process equipment designed for the effective transfer of heat energy between two fluids. For theheat transfer to occur two fluids must be at different temperatures and they must come thermal contact. Heat exchange involve convection in each fluid and conduction through the separating wall. Heat can flow only from hotter to cooler fluids, as per the second law of thermodynamics.
Fin type heat exchanger
Heat exchangers can be classified into four types, according to

1. Nature of heat exchange process:

  • Direct contact heat exchanger: this is done by complete physical mixing of heat and mass transfer. Examples are water cooling towers and jet condensers in steam power plants.
  • Regenerator: here hot and cold fluids flows alternately when hot fluid passes, the heat is transferred to the solid matrix and then stopped the flow of hot fluid, next cold fluid is passed on the matrix which takes heat from solid matrix. Examples are Open hearth and blast furnaces.
  • Recuperator: the cold fluid flows simultaneously on either side of a separating wall. Examples are super heaters, condensers, economizers and air pre-heaters in steam power plants, automobile radiators.

2. Relative direction of motion of fluids:

According to flow of fluids, the heat exchangers are classified into three categories:

2.1 Parallel flow heat exchangers:

In parallel flow heat exchangers, both the tube side fluid and the shell side fluid flow in same direction. In this case, the two fluids enter the heat exchanger from the same end with a large temperature difference.

2.2 Counter flow heat exchangers:

In counter flow heat exchangers, the two fluids flow in opposite directions. Each of the fluids enter the heat exchanger from opposite ends. Because the cooler fluid exists the counter flow heat exchanger at the end where the hot fluid enters the heat exchanger, the cooler fluid will approach the inlet temperature of the hot fluid.

2.3 Cross flow heat exchangers:

In cross flow heat exchangers, one fluid flows through tubes and second fluid passes around the tubes perpendicularly.

3. Mechanical design of heat exchanger surface:

  1. Concentric tubes
  2. Shell and tube
  3. Multiple shell and tube passes

4. Physical state of heat exchanging:

  1. Condenser
  2. Evaporator

Summary of types of heat exchangers
 
S.No
Type
 Major Characteristics
Applications
1Shell and tubeBundle of tubes encased in a cylinder shellAlways the first type of exchanger to consider
2Air cooled heat exchangerRectangular tube bundles mounted on frame, with air used as the cooling mediumEconomic where cost of cooling water is high
3Double pipePipe within a pipe; inner pipe may be finned or plainFor small units
4Extended surfaceExternally finned tubeServices where the outside tube resistance is appreciably greater then inside resistance. Also used in debottle necking existing units
5Brazed plate finSeries of plates separated by corrugated finsCryogenic services: all fluids must be clean
6Spiral woundSpirally wound tube coils within a shellCryogenic services: fluids must be clean
11Barometric condenserDirect contact of water and vaporWhere mutual solubilities of water and process fluid permit
8Bayonet tubeTube elements consists of an inner and tubeUseful for high temperature difference between shell and tube fluids
7Scraped surfacePipe within a pipe, with rotating blades scraping the inside wall of the inner pipeCrystallization cooling applications
9Falling film coolerVertical units using a the film of water in tubesSpecial cooling applications
12Cascade coolersCooling water flows over series of tubesSpecial cooling applications for every corrosive process fluids
13Impervious graphiteConstructed of graphite for corrosion protectionUsed in very highly corrosive heat exchanger services
10Worm coolersPipe coils submerged in a box of waterEmergency cooling

Comments

Popular posts from this blog

Fundamental Concepts and Terms in Vibration

Fundamental Concepts and Terms in Vibration Vibration is a mechanical phenomenon, It is a movement first in one direction and then back again in the reverse direction. e.g: the motion of a swinging pendulum, the motion of a tuning fork. Any simple vibration is described by three factors: its amplitude; its frequency and rate of oscillation. Some of the general terms you will come across while studying on vibration topic are Oscillatory motion, Simple Harmonic Motion, Periodic Motion. now we will see the above mentioned terms in brief. Oscillatory motion is described as motion that repeats itself in a regular intervals of time. for example a sine wave or cos wave or pendulum. The time taken for an oscillation to occur is often referred to as the oscillatory period. Simple Harmonic Motion: Simple Harmonic Motion is periodic motion in which the restoring force is directly proportional to the displacement. F = -k*x A simple harmonic motion of a pendulum is an example of m...

Grashof’s Law

Grashof’s Law The Grashof’s law states that for a four-bar linkage system, the sum of the shortest and longest link of a planar quadrilateral linkage is less than or equal to the sum of the remaining two links, then the shortest link can rotate fully with respect to a neighboring link. Consider a four-bar-linkage. Denote the smallest link by S, the longest link by L and the & other two links by P and Q. If the Grashof’s Law condition is satisfied i.e S+L ≤ P+Q, then depending on whether shortest link ‘S’ is connected to the ground by one end, two ends, or no end there are 3 possible mechanisms. They are: Double crank mechanism Double-rocker mechanism  and Crank and Rocker Mechanism 1. Double crank mechanism In double crank mechanism, the shortest link ‘S’ is a ground link. Both input crank and output crank rotate at 360°. Grashof’s condition for double crank mechanism: s+l > p+ q Let:  ‘s’  = length of shortest link, ‘l’  = length...

Gruebler’s Equation

Gruebler’s Equation Degrees of freedom for planar linkages joined with common joints can be calculated through Gruebler’s equation. Gruebler’s equation is given by the formula: where, n = total number of links in the mechanism j p  = total number of primary joints (pins or sliding joints) j h  = total number of higher-order joints (cam or gear joints) Mechanisms and structures with varying mobility for Figure (a), (b) and (c) Most linkages used in machines have a single degree of freedom. An example of single degree-of-freedom linkage is shown in figure (a). Linkages with zero or negative degrees of freedom are termed locked mechanisms. Locked mechanisms are unable to move and form a structure. A truss is a structure composed of simple links and connected with pin joints and zero degrees of freedom. An example of locked mechanism is shown in figure (b). Linkages with multiple degrees of freedom need more than one dri...