Skip to main content

Mechanical Properties of Materials

Mechanical Properties of Materials

Mechanical properties helps us to measure how materials behave under a load. Mechanical properties of materials are mentioned below.

Elastic Material:

A material which regains its original size and shape on removal stress is said to be elastic stress.

Plastic material:

A material which can undergo permanent deformation without rupture aid to be plastic material. This property of the material is known as plasticity. Plasticity is important when a material is to be mechanically formed by causing the material to flow.

Ductile Material:

A material which an undergo considerable deformation without rupture is said to be ductile material. The major portion of deformation is plastic.

Brittle Material:

A material which ruptures with little or no plastic deformation is said to brittle materials.

Set of Permanent set:

The deformation or strain remaining in a body after removal of stress is known as permanent set. This is due to elastic property of material.

Elastic limit:

The greatest stress that a material can take without permanent set on the removal of stress is known as elastic limit.

Proportionality limit:

The greatest stress that a material can take without deviation from straight line between stress and strain is known as proportionality limit.

Endurance limit or Fatigue limit:

The greatest stress, applied infinite number of times, that a material can take without causing failure is known as endurance limit or fatigue limit.

Ultimate Strength:

The maximum stress material can take is known as ultimate strength. Ultimate strength is equal to maximum load divided by original area of cross section.

Modulus of Resilience:

The energy stored per unit volume at the elastic limit is known as modulus of resilience.

Modulus of Toughness:

The amount of work required per unit volume to cause failure, under static loading, is called modulus of toughness.

Modulus of Rupture:

The ultimate strength in flexure or torsion is known as modulus of rupture.

Strain hardening:

The increase in strength after plastic zone due to rearrangement of molecules in the material.

Proof stress:

The stress which is just sufficient to cause a permanent set(elongation) equal to a specified percentage of the original gauge length.

Elastic Strain:

Elastic strain is a dimensional change that occur in a material due to the application of loads and disappears completely on the removal of the loads.

Plastic Strain:

It is a dimensional change that occurs in a material due to application of the loads and does not disappear after the removal of the loads.

Ductility and malleability:

The plastic response of material to tensile force is known as ductility and plastic response to compression force is known as malleability. The elongation and reduction of area of test piece tested to failure in tension are generally taken as measures of ductility of material.

Creep:

The long term deflection due to sustained (constant) loads.

Factor of Safety:

Factor of safety is defined as follows
For Ductile materials,
F.O.S = yield stress / working stress
For Brittle materials,
F.O.S = ultimate stress / working stress

Margin of Safety:

Margin of safety = Factor of safety – 1

Comments

Popular posts from this blog

Fundamental Concepts and Terms in Vibration

Fundamental Concepts and Terms in Vibration Vibration is a mechanical phenomenon, It is a movement first in one direction and then back again in the reverse direction. e.g: the motion of a swinging pendulum, the motion of a tuning fork. Any simple vibration is described by three factors: its amplitude; its frequency and rate of oscillation. Some of the general terms you will come across while studying on vibration topic are Oscillatory motion, Simple Harmonic Motion, Periodic Motion. now we will see the above mentioned terms in brief. Oscillatory motion is described as motion that repeats itself in a regular intervals of time. for example a sine wave or cos wave or pendulum. The time taken for an oscillation to occur is often referred to as the oscillatory period. Simple Harmonic Motion: Simple Harmonic Motion is periodic motion in which the restoring force is directly proportional to the displacement. F = -k*x A simple harmonic motion of a pendulum is an example of m...

Grashof’s Law

Grashof’s Law The Grashof’s law states that for a four-bar linkage system, the sum of the shortest and longest link of a planar quadrilateral linkage is less than or equal to the sum of the remaining two links, then the shortest link can rotate fully with respect to a neighboring link. Consider a four-bar-linkage. Denote the smallest link by S, the longest link by L and the & other two links by P and Q. If the Grashof’s Law condition is satisfied i.e S+L ≤ P+Q, then depending on whether shortest link ‘S’ is connected to the ground by one end, two ends, or no end there are 3 possible mechanisms. They are: Double crank mechanism Double-rocker mechanism  and Crank and Rocker Mechanism 1. Double crank mechanism In double crank mechanism, the shortest link ‘S’ is a ground link. Both input crank and output crank rotate at 360°. Grashof’s condition for double crank mechanism: s+l > p+ q Let:  ‘s’  = length of shortest link, ‘l’  = length...

Gruebler’s Equation

Gruebler’s Equation Degrees of freedom for planar linkages joined with common joints can be calculated through Gruebler’s equation. Gruebler’s equation is given by the formula: where, n = total number of links in the mechanism j p  = total number of primary joints (pins or sliding joints) j h  = total number of higher-order joints (cam or gear joints) Mechanisms and structures with varying mobility for Figure (a), (b) and (c) Most linkages used in machines have a single degree of freedom. An example of single degree-of-freedom linkage is shown in figure (a). Linkages with zero or negative degrees of freedom are termed locked mechanisms. Locked mechanisms are unable to move and form a structure. A truss is a structure composed of simple links and connected with pin joints and zero degrees of freedom. An example of locked mechanism is shown in figure (b). Linkages with multiple degrees of freedom need more than one dri...