Skip to main content

Newton’s Laws of Motion

Newton’s Laws of Motion 

The problems of mechanics can be solved by Newton’s laws of motion. The three laws proposed by Sir Isaac Newton, described as follows.
Newton's three laws of motion

Newton’s First Law of Motion:

Newton’s first law of motion states that every object will remain at rest or in uniform  motion in a straight line unless compelled to its state by the action of an external force.
The first law of motion is normally taken as the definition of inertia. If there is no net force acting on an object then object will remain a constant velocity. If an external force is applied, the velocity of body will change because of force.

Newton’s Second law of Motion:

Newton’s Second law of motion states that if the resultant force acting on a particle is not zero, the particle will have acceleration proportional to the magnitude of the resultant and in the direction of this resultant force.
This law explains how velocity of an object changes when it is subjected to an external force. The law defines force to be equal to change in momentum (mass times velocity) per unit time.
For an object with constant mass m, Newton’s second law of motion states that the force ‘F’ is the product of an object’s mass ‘m’ and its acceleration ‘a’.
F = m.a
For an externally applied force, the acceleration depends on mass of the object and a change in velocity will generate a force. The above equation works in both ways.

Newton’s Third Law of Motion :

Newton’s third law of motion states that for every action (force) in nature there is an equal and opposite reaction.
In other words, if object ‘A’ exerts a force on object ‘B’, then object ‘B’ also exerts an equal force on object ‘A’.
The third law of motion can be used to explain the generation of lift by a wing and the production of thrust by a jet engine.

Comments

Popular posts from this blog

Grashof’s Law

Grashof’s Law The Grashof’s law states that for a four-bar linkage system, the sum of the shortest and longest link of a planar quadrilateral linkage is less than or equal to the sum of the remaining two links, then the shortest link can rotate fully with respect to a neighboring link. Consider a four-bar-linkage. Denote the smallest link by S, the longest link by L and the & other two links by P and Q. If the Grashof’s Law condition is satisfied i.e S+L ≤ P+Q, then depending on whether shortest link ‘S’ is connected to the ground by one end, two ends, or no end there are 3 possible mechanisms. They are: Double crank mechanism Double-rocker mechanism  and Crank and Rocker Mechanism 1. Double crank mechanism In double crank mechanism, the shortest link ‘S’ is a ground link. Both input crank and output crank rotate at 360°. Grashof’s condition for double crank mechanism: s+l > p+ q Let:  ‘s’  = length of shortest link, ‘l’  = length...

Gruebler’s Equation

Gruebler’s Equation Degrees of freedom for planar linkages joined with common joints can be calculated through Gruebler’s equation. Gruebler’s equation is given by the formula: where, n = total number of links in the mechanism j p  = total number of primary joints (pins or sliding joints) j h  = total number of higher-order joints (cam or gear joints) Mechanisms and structures with varying mobility for Figure (a), (b) and (c) Most linkages used in machines have a single degree of freedom. An example of single degree-of-freedom linkage is shown in figure (a). Linkages with zero or negative degrees of freedom are termed locked mechanisms. Locked mechanisms are unable to move and form a structure. A truss is a structure composed of simple links and connected with pin joints and zero degrees of freedom. An example of locked mechanism is shown in figure (b). Linkages with multiple degrees of freedom need more than one dri...

Fundamental Concepts and Terms in Vibration

Fundamental Concepts and Terms in Vibration Vibration is a mechanical phenomenon, It is a movement first in one direction and then back again in the reverse direction. e.g: the motion of a swinging pendulum, the motion of a tuning fork. Any simple vibration is described by three factors: its amplitude; its frequency and rate of oscillation. Some of the general terms you will come across while studying on vibration topic are Oscillatory motion, Simple Harmonic Motion, Periodic Motion. now we will see the above mentioned terms in brief. Oscillatory motion is described as motion that repeats itself in a regular intervals of time. for example a sine wave or cos wave or pendulum. The time taken for an oscillation to occur is often referred to as the oscillatory period. Simple Harmonic Motion: Simple Harmonic Motion is periodic motion in which the restoring force is directly proportional to the displacement. F = -k*x A simple harmonic motion of a pendulum is an example of m...