Skip to main content

Viscosity of a Fluid

Viscosity of a Fluid

A fluid at rest cannot resist shearing forces and if such forces act on a fluid in contact with a solid boundary as shown in below figure,
variation of velocity with distancethe fluid will flow over the boundary in such a way that the particles immediately in contact with the boundary have the same velocity as the boundary, while successive layers of fluid parallel to the boundary move with increasing velocities. Shear stress opposing the relative motion of these layers are set up, their magnitude depending on the velocity gradient from layer to layer. For fluids obeying Newton’s law of viscosity, taking the direction of motion as the ‘x’ direction and vx as the velocity of the fluid in the ‘x’ direction at a distance ‘y’ from the boundary, the shear stress (τx) in the ‘x’ direction is given by the formula
shear stress

Coefficient of Dynamic Viscosity:

The coefficient of dynamic viscosity (μ) can be defined as the shear force per unit area (or shear stress τ) required to drag one layer of fluid with unit velocity passed another layer a unit distance away from it in the fluid. Rearranging equation,
coefficient of dynamic viscosity
Units: newton seconds per square meter (N s m-2) or kilograms per meter per second (kg m-1 s-1). (But note that the coefficient of viscosity is often measured in poise (P); 10 P = 1 kg m-1 s-1.)
Dimensions: ML-1T-1.
Typical values: for water is 1.14 × 10-3 kg m-1 s-1, and for air is 1.78 × 10-5 kg m-1 s-1.

Kinematic Viscosity:

The kinematic viscosity (v) is defined as the ratio of dynamic viscosity to mass density.
kinematic viscosity
Units: square meters per second (m2 s-1). (But note that kinematic viscosity is often measured in stokes (St); 104 St = 1 m2s-1.)
Dimensions: L2t-1.
Typical values: for water is 1.14 × 10-6 m2 s-1, and for air is 1.46 × 10-5 m2 s-1.

Mechanism of Viscosity:

The viscosity of a fluid is caused mainly by two factors:
1. Intermolecular Force of Cohesion:
Due to strong cohesive forces between the molecules, any layer in a moving fluid tries to drag the adjacent layer to move with equal speed, and thus produces the effect of viscosity. Since cohesion decreases with temperature, the liquid viscosity does likewise.
2. Molecular Momentum Exchange:
As the random molecular motion of fluid particles increases with increases in temperature, the viscosity increases accordingly. Therefore, except for very special cases (e.g., at high-level pressure), the viscosity of both liquids and gases cease to be a function of temperature.

Variation of Viscosity:

Viscosity of fluid varies with temperature and pressure both; the effect depends on the state of fluid (gas or liquid)
1. Changes in Viscosity of Liquids:
A higher temperature implies a more vigorous random motion, thereby weakening the effective intermolecular attraction. The viscosity of liquids is governed by intermolecular forces of attraction (i.e cohesive forces). Therefore, viscosity decreases with increasing temperature. For many liquids, the temperature dependence of viscosity can be represented reasonably well by the Arrhenius equation,
μ = AeB/T
where ‘T’ is the absolute temperature, and A and B are constants.
2. Changes in Viscosity of Gases:
Primarily because of lesser molecular density, the intermolecular attraction is not dominant in gases, and the viscosity originates mainly because of the transfer and exchange of molecular momentum. Thus, a viscosity of gases commonly increases with increase in temperature.

Comments

Popular posts from this blog

Fundamental Concepts and Terms in Vibration

Fundamental Concepts and Terms in Vibration Vibration is a mechanical phenomenon, It is a movement first in one direction and then back again in the reverse direction. e.g: the motion of a swinging pendulum, the motion of a tuning fork. Any simple vibration is described by three factors: its amplitude; its frequency and rate of oscillation. Some of the general terms you will come across while studying on vibration topic are Oscillatory motion, Simple Harmonic Motion, Periodic Motion. now we will see the above mentioned terms in brief. Oscillatory motion is described as motion that repeats itself in a regular intervals of time. for example a sine wave or cos wave or pendulum. The time taken for an oscillation to occur is often referred to as the oscillatory period. Simple Harmonic Motion: Simple Harmonic Motion is periodic motion in which the restoring force is directly proportional to the displacement. F = -k*x A simple harmonic motion of a pendulum is an example of m...

Grashof’s Law

Grashof’s Law The Grashof’s law states that for a four-bar linkage system, the sum of the shortest and longest link of a planar quadrilateral linkage is less than or equal to the sum of the remaining two links, then the shortest link can rotate fully with respect to a neighboring link. Consider a four-bar-linkage. Denote the smallest link by S, the longest link by L and the & other two links by P and Q. If the Grashof’s Law condition is satisfied i.e S+L ≤ P+Q, then depending on whether shortest link ‘S’ is connected to the ground by one end, two ends, or no end there are 3 possible mechanisms. They are: Double crank mechanism Double-rocker mechanism  and Crank and Rocker Mechanism 1. Double crank mechanism In double crank mechanism, the shortest link ‘S’ is a ground link. Both input crank and output crank rotate at 360°. Grashof’s condition for double crank mechanism: s+l > p+ q Let:  ‘s’  = length of shortest link, ‘l’  = length...

Gruebler’s Equation

Gruebler’s Equation Degrees of freedom for planar linkages joined with common joints can be calculated through Gruebler’s equation. Gruebler’s equation is given by the formula: where, n = total number of links in the mechanism j p  = total number of primary joints (pins or sliding joints) j h  = total number of higher-order joints (cam or gear joints) Mechanisms and structures with varying mobility for Figure (a), (b) and (c) Most linkages used in machines have a single degree of freedom. An example of single degree-of-freedom linkage is shown in figure (a). Linkages with zero or negative degrees of freedom are termed locked mechanisms. Locked mechanisms are unable to move and form a structure. A truss is a structure composed of simple links and connected with pin joints and zero degrees of freedom. An example of locked mechanism is shown in figure (b). Linkages with multiple degrees of freedom need more than one dri...