Skip to main content

Pressurized Water Reactor (PWR)

Pressurized Water Reactor (PWR)

The excellent properties of water as a moderator and coolant makes the Pressurized Water Reactor (PWR) a natural choice for power reactors. The most important limitation on a PWR is the the critical temperature of water, 374°C. This is the maximum possible temperature of a coolant in the reactor and in practice it is considerably less, possibly about 300°C, to allow a margin of safety. In a PWR, the coolant pressure must be greater than the saturation pressure at, say, 300°C (85.93 bar) to suppress boiling. The pressure is maintained at about 155 bar so as to prevent bulk boiling.
A typical diagram of pressurized water reactor (PWR)
A typical diagram of pressurized water reactor. Image source: world-nuclear.org
A Pressurized Water Reactor power plant is composed of two loops in series, the coolant loop, called the primary loop, and the water-steam or working fluid loop (below figure). The coolant picks up the heat in the reactor and transfers it to working fluid in the steam generator. The steam is then used in a Rankine type cycle to produce electric power.
Schematic of a PWR power plant
Schematic of a PWR power plant
The fuel in Pressurized Water Reactors is slightly enriched uranium in the form of thin rods or plates. The cladding is either of stainless steel or zircaloy. Because of very high coolant pressure, the steel pressure vessel containing the core thickness must be about 20 to 25 cm. A typical Pressurized Water Reactor contains about 150 to 250 fuel assemblies with 80-100 tonnes of uranium. Each assembly being an array of rods. Generally in a every fuel assembly, there are 200-300 fuel rods and 24 guide tubes for control rods. Grid spacers maintain a separation between the fuel rods to prevent excessive vibration and allow some axial thermal expansion.
The coolant leaving the reactor enters the steam generator which can be either shell and tube type with U-tube bundles or once through type. In the U-tube steam generator, the hot coolant enters an inlet channel head at the bottom, flows through the U-tubes and reverses direction to an outlet at the bottom. It can produce only saturated steam. Feedwater is on the shell side. A dry or low degree of superheat steam is possible.

Comments

Popular posts from this blog

Fundamental Concepts and Terms in Vibration

Fundamental Concepts and Terms in Vibration Vibration is a mechanical phenomenon, It is a movement first in one direction and then back again in the reverse direction. e.g: the motion of a swinging pendulum, the motion of a tuning fork. Any simple vibration is described by three factors: its amplitude; its frequency and rate of oscillation. Some of the general terms you will come across while studying on vibration topic are Oscillatory motion, Simple Harmonic Motion, Periodic Motion. now we will see the above mentioned terms in brief. Oscillatory motion is described as motion that repeats itself in a regular intervals of time. for example a sine wave or cos wave or pendulum. The time taken for an oscillation to occur is often referred to as the oscillatory period. Simple Harmonic Motion: Simple Harmonic Motion is periodic motion in which the restoring force is directly proportional to the displacement. F = -k*x A simple harmonic motion of a pendulum is an example of m...

Grashof’s Law

Grashof’s Law The Grashof’s law states that for a four-bar linkage system, the sum of the shortest and longest link of a planar quadrilateral linkage is less than or equal to the sum of the remaining two links, then the shortest link can rotate fully with respect to a neighboring link. Consider a four-bar-linkage. Denote the smallest link by S, the longest link by L and the & other two links by P and Q. If the Grashof’s Law condition is satisfied i.e S+L ≤ P+Q, then depending on whether shortest link ‘S’ is connected to the ground by one end, two ends, or no end there are 3 possible mechanisms. They are: Double crank mechanism Double-rocker mechanism  and Crank and Rocker Mechanism 1. Double crank mechanism In double crank mechanism, the shortest link ‘S’ is a ground link. Both input crank and output crank rotate at 360°. Grashof’s condition for double crank mechanism: s+l > p+ q Let:  ‘s’  = length of shortest link, ‘l’  = length...

Gruebler’s Equation

Gruebler’s Equation Degrees of freedom for planar linkages joined with common joints can be calculated through Gruebler’s equation. Gruebler’s equation is given by the formula: where, n = total number of links in the mechanism j p  = total number of primary joints (pins or sliding joints) j h  = total number of higher-order joints (cam or gear joints) Mechanisms and structures with varying mobility for Figure (a), (b) and (c) Most linkages used in machines have a single degree of freedom. An example of single degree-of-freedom linkage is shown in figure (a). Linkages with zero or negative degrees of freedom are termed locked mechanisms. Locked mechanisms are unable to move and form a structure. A truss is a structure composed of simple links and connected with pin joints and zero degrees of freedom. An example of locked mechanism is shown in figure (b). Linkages with multiple degrees of freedom need more than one dri...